Search results for "axial-vector coupling"
showing 8 items of 8 documents
Consistent large-scale shell-model analysis of the two-neutrino ββ and single β branchings in 48Ca and 96Zr
2020
Abstract Two-neutrino double-beta-decay matrix elements M 2 ν and single beta-decay branching ratios were calculated for 48Ca and 96Zr in the interacting nuclear shell model using large single-particle valence spaces with well-tested two-body Hamiltonians. For 48Ca the matrix element M 2 ν = 0.0511 is obtained, which is 5.5% smaller than the previously reported value of 0.0539. For 96Zr this work reports the first large-scale shell-model calculation of the nuclear matrix element, yielding a value M 2 ν = 0.0747 with extreme single-state dominance. These matrix elements, combined with the available ββ-decay half-life data, yield effective values of the weak axial coupling which in turn are u…
Confirmation of gA quenching using the revised spectrum-shape method for the analysis of the 113Cd β-decay as measured with the COBRA demonstrator
2021
In this article we present an updated spectrum-shape analysis of the $^{113}$Cd fourfold forbidden non-unique $\beta$-decay transition in order to address the quenching of the weak axial-vector coupling $g_{\rm A}$ in low-momentum exchange nuclear processes. The experimental data were collected in a dedicated low-threshold run with the COBRA demonstrator at the LNGS and resulted in 44 individual $^{113}$Cd spectra. These data are evaluated in the context of three nuclear model frameworks based on a revised version of the spectrum-shape method and the conserved vector current hypothesis. The novel idea devised in the present work is to fit the value of the small relativistic nuclear matrix e…
Value of the Axial-Vector Coupling Strength in β and ββ Decays : A Review
2017
In this review the quenching of the weak axial-vector coupling constant, $g_{\rm A}$, is discussed in nuclear $\beta$ and double-$\beta$ decays. On one hand, the nuclear-medium and nuclear many-body effects are separated, and on the other hand the quenching is discussed from the points of view of different many-body methods and different $\beta$-decay and double-$\beta$-decay processes. Both the historical background and the present status are reviewed and contrasted against each other. The theoretical considerations are tied to performed and planned measurements, and possible new measurements are urged, whenever relevant and doable. Relation of the quenching problem to the measurements of …
Neutrino-nuclear responses for astro-neutrinos, single beta decays and double beta decays
2019
Neutrino–nuclear responses associated with astro-neutrinos, single beta decays and double beta decays are crucial in studies of neutrino properties of interest for astro-particle physics. The present report reviews briefly recent studies of the neutrino–nuclear responses from both experimental and theoretical points of view in order to obtain a consistent understanding of the many facets of the neutrino–nuclear responses. Subjects discussed in this review include (i) experimental studies of neutrino–nuclear responses by means of single beta decays, charge-exchange nuclear reactions, muon- photon- and neutrino–nuclear reactions, and nucleon-transfer reactions, (ii) implications of and discus…
Quenching of gA deduced from the β-spectrum shape of 113Cd measured with the COBRA experiment
2020
A dedicated study of the quenching of the weak axial-vector coupling strength gA in nuclear processes has been performed by the COBRA collaboration. This investigation is driven by nuclear model calculations which show that the β-spectrum shape of the fourfold forbidden non-unique decay of 113Cd strongly depends on the effective value of gA. Using an array of CdZnTe semiconductor detectors, 45 independent 113Cd spectra were obtained and interpreted in the context of three nuclear models. The resulting effective mean values are g‾A(ISM)=0.915±0.007, g‾A(MQPM)=0.911±0.013 and g‾A(IBFM-2)=0.955±0.022. These values agree well within the determined uncertainties and deviate significantly from th…
Systematic approach to β and 2vββ decays of mass A=100-136 nuclei
2015
In this work we perform a systematic study of pairs of single-β-decaying nuclei in the mass region A = 100–136 to extract information on the effective value of the axial-vector coupling constant gA. As the many-body framework we use the quasiparticle random-phase approximation (QRPA) and its proton-neutron variant (pnQRPA) in singleparticle valence bases with Woods-Saxon-calculated single-particle energies. It is found that, to a reasonable approximation, gA is a linear function of the mass number A, with a slightly different parametrization below and above the mass A = 121. Using the values of gA extracted from the linear fit, as well as an average constant value of gA, we calculate the tw…
Beta-spectrum shapes of forbidden β decays
2018
The neutrinoless [Formula: see text] decay of atomic nuclei continues to attract fervent interest due to its potential to confirm the possible Majorana nature of the neutrino, and thus the nonconservation of the lepton number. At the same time, the direct dark matter experiments are looking for weakly interacting massive particles (WIMPs) through their scattering on nuclei. The neutrino-oscillation experiments on reactor antineutrinos base their analyses on speculations of [Formula: see text]-spectrum shapes of nuclear decays, thus leading to the notorious “reactor antineutrino anomaly.” In all these experimental efforts, one encounters the problem of [Formula: see text]-spectrum shapes of…